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Outlines of Tutorial

1. Machine Learning and Bioinformatics

 Machine Learning

 Problems in Bioinformatics

 Machine Learning Methods

 Applications of ML Methods for Bio Data Mining

2. Graphical Models

 Bayesian Network

 Generative Topographic Mapping

 Probabilistic clustering

 NMF (nonnegative matrix factorization)
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Outlines of Tutorial

3. Other Machine Learning Methods

 Neural Networks

 K Nearest Neighborhood 

 Radial Basis Function

4. DNA Microarrays 

5. Applications of GTM for Bio Data Mining

 DNA Chip Gene Expression Data Analysis 

 Clustering the Genes

6. Summary and Discussion

*  References 



4
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Machine Learning

 Supervised Learning

Estimate an unknown mapping from known input- output pairs

Learn fw from training set D={(x,y)} s.t.

Classification: y is discrete, categorical

Regression: y is continuous

 Unsupervised Learning

Only input values are provided

Learn fw from D={(x)} 

Compression

Clustering

)()( xxw fyf 

yf )(xw
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Machine Learning Methods

 Probabilistic Models

Hidden Markov Models

Bayesian Networks

Generative Topographic Mapping (GTM)

 Neural Networks

Multilayer Perceptrons (MLPs)

Self-Organizing Maps (SOM)

 Genetic Algorithms

 Other Machine Learning Algorithms

Support Vector Machines

Nearest Neighbor Algorithms

Decision Trees

http://en.wikipedia.org/wiki/Image:Hmm_temporal_bayesian_net.png
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Applications of ML Methods for Bio

Data Mining (1)

 Structure and Function Prediction

Hidden Markov Models

Multilayer Perceptrons

Decision Trees

 Molecular Clustering and Classification

Support Vector Machines

Nearest Neighbor Algorithms

 Expression (DNA Chip Data) Analysis: 

Self-Organizing Maps

Bayesian Networks

Generative Topographic Mapping

 Bayesian Networks

 Gene Modeling  Gene Expression Analysis

 [Friedman et al., 2000]



8

Applications of ML Methods for Bio

Data Mining (2)
 Multi-layer Perceptrons

Gene Finding / Structure Prediction

Protein Modeling / Structure and Function Prediction

 Self-Organizing Maps (Kohonen Neural Network)

Molecular Clustering

DNA Chip Gene Expression Data Analysis

 Support Vector Machines

Classification of Microarray Gene Expression and Gene Functional 

Class

 Nearest Neighbor Algorithms

3D Protein Classification

 Decision Trees

Gene Finding: MORGAN system

Molecular Clustering
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2. Probabilistic Graphical Models

 Represent the joint probability distribution on 
some random variables in compact form.

Undirected probabilistic graphical models
• Markov random fields

• Boltzmann machines

Directed probabilistic graphical models
• Helmholtz machines

• Bayesian networks

 Probability distribution for some variables given 
values of other variables can be obtained in a 
probabilistic graphical model.

Probabilistic inference.
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Classes of Graphical Models

Graphical Models

- Boltzmann Machines 

- Markov Random Fields

- Bayesian Networks

- Latent Variable Models

- Hidden Markov Models

- Generative Topographic Mapping

- Non-negative Matrix Factorization

Undirected Directed
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 Bayesian Networks

A graphical model for probabilistic relationships among a set of 
variables

 Generative Topographic Mapping

A graphical model through a nonlinear relationship between the latent 

variables and observed features.  

(Bayesian Network)                                                                                  (GTM)



Bayesian Networks
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Introduction

 Bayesian network is a graphical network for expressing the 
dependency relations between features or variables

 BN can learn the casual relationships  for the understanding 
of the problem domain

BN offers an efficient way of avoiding the over fitting of the 
data (model averaging, model selection)  

Scores for network structure fitness: BDe, MDL, BIC
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Bayesian approach

 Bayesian probability: a person’s degree of belief 

 Thumbtack example: After N flips, probability of heads 

on the (N+1)th toss = ? 

 Classic analysis: estimate this probability from the N observations with 

low variance and bias

 Ex) ML estimator: choose     to maximize the likelihood 

 Bayesian approach: D is fixed and imagine all the possible     from this 

D
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Bayesian approach
 Bayesian approach:

Conjugate prior has posterior as the same family of 

distribution w.r.t. the likelihood distribution
 Normal likelihood - Normal prior - Normal posterior

 Binomial likelihood - Beta prior - Beta posterior

 Multinomial likelihood - Dirichlet prior- Dirichlet posterior

 Poisson likelihood - Gamma prior - Gamma posterior
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Bayesian approach
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 Bayesian networks represent statistical relationships 

among random variables (e.g. genes).

)()|()|(),|()(

),,,,(

EPADPBCPEABPAP

EDCBAP



- B and D are independent given A.

- B asserts dependency between A and E.

- A and C are independent given B.

Bayesian Networks (1)
-Architecture
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 BN = (S, P) consists a network structure S and  a set of 

local probability distributions P 
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• Structure can be found by relying on the prior knowledge of casual relationships

<BN for detecting credit card fraud>

Bayesian Networks (1)
-example
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 DAG (Directed Acyclic Graph)

 Bayesian Network: Network Structure (S) + Local   

Probability (P).

 Express dependence relations between variables

 Can use prior knowledge on the data (parameter)

Dirichlet for multinomial data 

Normal-Wishart for normal data     

 Methods of searching:

Greedy,  Reverse,  Exhaustive

Bayesian Networks (2)
-Characteristics
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 For  missing values:

 Gibbs sampling

 Gaussian Approximation

 EM

 Bound and Collapse  etc.

 Interpretations:  

 Depends on the prior order of nodes or prior structure.

 Local conditional probability

 Choice of nodes

 Overall nature of data

Bayesian Networks (3)
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Inferences in BN

 A tutorial on learning with Bayesian networks (David Heckerman)
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Inferences in BN (parameter learning)
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Parameter and structure learning
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Averaging over possible models: bottleneck in 

computations

 Model selection

 Selective model averaging

Predicting the next case:

Bde score
posterior
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Search method for network structure

 Greedy search : 

 First choose a network structure

 Evaluate (e) for all e  E and make the change e for which (e) is maximum. 

(E: set of eligible changes to graph, (e): the change in log score.) 

 Terminate the search when there is no e with  positive (e).

 Avoiding local maxima by simulated annealing 

 Initialize the system at some temperature T0

 Pick some eligible change e at random and evaluate p=exp((e)/T0)

 If p>1 make the change; otherwise make the change with probability p.

 Repeat this process  times or until make  changes 

 If no changes, lower the temperature and continue the process 

 Stop if the temperature is lowered more than  times
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Example
 A database is given and the possible structures are S1(figure) and 

S2(same with an arc added from Age to Gas) for fraud detection problem.



S1

S2

1 1 1

1 1 1 1
1

1 2

( ) ( )
( | ) ( ) ( | ) / ( ),  ( | )

( ) ( )

( | ) ( , | ) ( | , ) ( | ),   ( | , )

( | ) 0.26,   ( | ) 0.7

i i

h h

q rn
h h h h ij ijk ijk

i j k

ij ij ijk

n
h h h h ijk ijk

N N N N
iS S

ij ij

h h

N
p S D p S p D S p D p D S

N

N
p D p S D p D S p S D p D S

N

p S D p S D

 

 





  

   


  
   

  


    



 

x x x x

1 1 1 1 2

4,

( | ) 0.26 ( | , ) 0.74 ( | , )h h

N N N
p D p D S p D S

  
 x x x



27

Case studies (1)
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Case studies (2)

PE: parental encouragement

SES: Socioeconomic status

CP: college plans
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Case studies (3)

 All network structures were assumed to be equally likely (structure 

where SEX and SES had parents or/and CP had children are 

excluded)

 SES has a direct influence on IQ is most suspicious result: new 

model is considered with a hidden variable pointing SES, IQ or 

SES, IQ, PE /and none or one or both of (SES-PE, PE-IQ) 

connections are removed.  

 2x1010 times more likely than the best model with no hidden 

variables.

 Hidden variable is influencing both socioeconomic status and IQ: 

some measure of ‘parent quality’. 
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 GTM is a non-linear mapping model between latent space 

and data space. 

Generative Topographic Mapping (1)

wxWxf

eWxfg

)();(

);(







31

 A complex data structure is modeled from an intrinsic 

latent space through a nonlinear mapping.

 t :   data point

 x :   latent point

 :   matrix of basis functions

W :   constant matrix

E  :  Gaussian noise

Generative Topographic Mapping (2)

EWxt  )(
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Generative Topographic Mapping (3)

 A distribution of  x induces a probability distribution  

in  the data space for  non-linear y(x,w).

 Likelihood  for the  grid of K points
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 Usually the latent distribution is assumed to be uniform 

(Grid).

 Each data point is assigned to a grid point probabilistically.

 Data can be visualized by projecting each data point onto the 

latent space to reveal interesting features

 EM algorithm for training. 

 Initialize parameter W for a given grid and basis function set.

 (E-Step) Assign each data point’s probability of belonging to each 

grid point.

 (M-Step) Estimate the parameter W by maximizing the corresponding

log likelihood of data.  

Until some convergence criterion is met.

Generative Topographic Mapping(4)
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K-Nearest Neighbor Learning

 Instance 

 points in the n-dimensional space

feature vector   <a1(x), a2(x),...,an(x)>

 distance 

 target function : discrete or real value
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 Training algorithm:

 For each training example (x,f(x)), add the example to the list 

training_examples

 Classification algorithm:

 Given a query instance xq to be classified,

• Lex x1...xk denote the k instances from training_examples that are nearest to xq

• Return
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Distance-Weighted N-N Algorithm

 Giving greater weight to closer neighbors

discrete case

real case
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Remarks on k-N-N Algorithm

 Robust to noisy training data

 Effective in sufficiently large set of training data

 Subset of instance attributes

 Dominated by irrelevant attributes

weight each attribute differently

 Indexing the stored training examples

kd-tree
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Radial Basis Functions

 Distance weighted regression and ANN

• where xu : instance from X
• Ku(d(xu,x)) : kernel function

 The contribution from each of the Ku(d(xu,x)) terms is localized to a region 
nearby the point xu : Gaussian Function

 Corresponding two layer network

 first layer : computes the values of the various Ku(d(xu,x))

 second layer : computes a linear combination of first-layer unit values.
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RBF network

 Training
construct kernel function
adjust weights

 RBF networks provide a global approximation to the target 

function, represented by a linear combination of many local 

kernel functions.

f(x)xf  ion   toapproximat   global : )(

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Artificial Neural Networks



 Artificial neural network(ANN)

General, practical method for learning real-
valued, discrete-valued, vector-valued 
functions from examples

 BACPROPAGATION 알고리즘

Use gradient descent to tune network 
parameters to best fit a training set of 
input-output pairs

 ANN learning

Training example의 error에 강하다.

Interpreting visual scenes, speech 
recognition, learning robot control strategy



Biological motivation

 생물학적인 뉴런과의 유사성
 For 1011 neurons interconnected with 104 neurons, 10-3 switching times 

(slower than 10-10 of computer), it takes only 10-1 to recognize. 

병렬 계산(parallel computing)

분산 표현(distributed representation)

 생물학적인 뉴런과의 차이점
각뉴런의 출력: single constant vs complex time series of spikes 



ALVINN system

 Input: 30 x 32 grid of 
pixel intensities (960 
nodes)

 4 hidden units

 Output: direction of 
steering (30 units)

 Training: 5 min. of 
human driving 

 Test: up to 70 miles for 
distances of 90 miles on 
public highway. (driving 
in the left lane with other 
vehicles present) 



Perceptrons

 vector of real-valued input

 weights & threshold

 learning: choosing values for the 
weights



Perceptron의 표현력

 Hyperplane decision surface for linearly separable example

 many boolean functions(XOR 제외): 

(e.g.) AND : w1=w2=1/2, w0=-0.8

OR : w1=w2=1/2, w0=-0.3

 m-of-n function

 disjunctive normal form  (disjunction (OR) of a set of 
conjuctions (AND))



Perceptron rule

 유한번의 학습 후 올바른 가중치를 찾아내려면
충족되어야 할 사항

training example이 linearly separable

충분히 작은 learning rate



Gradient descent &
Delta rule

 Perceptron rule fails to converge for 
linearly non-separable examples

 Delta rule can overcome the difficulty of 
perceptron rule by using gradient descent 

 In the training of unthresholded perceptron.

training error is given as a function of 
weights:

 Gradient descent can search the hypothesis 
space of different types of continuously 
parameterized hypotheses. 
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Hypethesis space



Gradient descent

 gradient: steepest increase in E





Dd

idddi xotw )(





Gradient descent(cont’d)

 Training example의 linearly separable 여부
에 관계없이 하나의 global minimum을 찾는다.

 Learning rate가 큰 경우 overstepping의 문제
-> learning rate를 점진적으로 줄이는 방법을
사용하기도 한다.



Remark
 Perceptron rule

thresholded output

정확한 weight (perfect classification)

linearly separable

 Delta rule

unthresholded output

점근적으로 에러를 최소화하는 weight

non-linearly separable



Multilayer networks

 Nonlinear decision surface

 Multiple layers of linear units still produce only linear 
functions

 Perceptron’s output is not differentiable wrt. inputs  



Differential threshold unit

 Sigmoid function

nonlinear, differentiable
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BACKPROPAGATION
알고리즘

 Backpropagation algorithm learns the weights of multi-layer 

network by minimizing the squared error between network 

output values and target values employing gradient descent.

 For multiple outputs, the errors are sum of all the output errors. 
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 새로운 error의 정의

(xj, i : input from node i to node j.

j: error-like term on the node j)

xj,i



BACKPROPAGATION
알고리즘(cont’d)

 Multiple local minima

 Termination conditions

fixed number of iteration

error threshold

error of separate validation set



Variations of BACKPROPAGATION
알고리즘

 Adding momentum

직전의 loop에서의 weight 갱신이 영향을
미침

 Learning in arbitrary acyclic network
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BACKPROPAGATION rule
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 Training rule for output unit 
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 Training rule for hidden unit 
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Convergence and local minima

 Only guarantees local minima

 This problem is not severe

 Algorithm is highly effective

 the more weights, the less severe local minima problem

 If weights are initialized to values near zero, the network will 
represent very smooth function (almost linear) in its inputs: 
sigmoid function is approx. linear when the weights are small.

 Common remedies for local minima:

 Add momentum term to escape the local minima.

 Use stochastic (incremental) gradient descent: different error 
surface for each example to prevent getting stuck

 Training of multiple networks and select the best one over a 
separate validation data set



Hidden layer representation

 Automatically discover useful representations at the 
hidden layers

 Allows the learner to invent features not explicitly 
introduced by the human designer. 











Generalization, overfitting, stopping 
criterion

 Terminating condition

 Threshold on the training error: poor strategy 

 Susceptible to overfitting: create overly complex decision 
surfaces that fit noise in the training data 

 Techniques to address the overfitting problem:

 Weight decay: decrease each weight by small factor 
(equivalent to modifying the definition of error to include 
a penalty term)

 Cross-validation approach: validation data in addition to 
the training data (lowest error over the validation set)

 K-fold cross-validation: For small training sets, cross 
validation is performed k different times and averaged (e.g. 
training set is partitioned into k subsets and then the 
mean iteration number is used.)





Face recognition

 for non-linearly separable

 unthresholded

 od 는 w에 대한 함수값



 Images of 20 different people/ 32images per person: varying 
expressions, looking directions, is/is not wearing sunglasses. 
Also variation in the background, clothing, position of face

 Total of 624 greyscale images. Each input image:120*128 
30*32 with each pixel intensity from  0 (Black) to 255 (White)

 Reducing computational demands

 mean value (cf, ALVINN: random)

 1-of-n output encoding

 More degree than single output unit

 The difference between the highest and second highest valued 
output can be used as a measure of confidence in the network 
prediction. 

 Sigmoid units cannot produce extreme values: avoid 0, 1 in the 
target values. <0.9, 0.1, 0.1, 0.1>

 2 layers, 3 units -> 90% success



Alternative error functions

 Adding a penalty term for weight magnitude

 Adding a derivative of the target function

 Minimizing the cross entropy of the network wrt. 
the target values. ( KL divergence: D(t,o)=tlog(t/o) )





Dd

dddd otot )1log()1(log



Recurrent networks
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3. DNA Microarrays 

 DNA Chip
 In the traditional "one gene in one experiment" method, the throughput is 

very limited and the "whole picture" of gene function is hard to obtain.

DNA chip hybridizes thousands of DNA samples of each gene on a glass 

with special cDNA samples. 

 It promises to monitor the whole genome on a single chip so that 

researchers can have a better picture of the the interactions among 

thousands of genes simultaneously. 

 Applications of DNA Microarray Technology

Gene discovery

Disease diagnosis 

Drug discovery: Pharmacogenomics

Toxicological research: Toxicogenomics
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Genes and Life

 It is believed that thousands of genes and their 

products (i.e., RNA and proteins) in a given living 

organism function in a complicated and 

orchestrated way that creates the mystery of life.

 Traditional methods in molecular biology work on 

a “one gene in one experiment” basis.

 Recent advance in DNA microarrays or DNA 

chips technology makes it possible to measure the 

expression levels of thousands of genes 

simultaneously.
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DNA Microarray Technology

 Photolithoraphy  

methods (a)

 Pin microarray 

methods (b)

 Inkjet methods 

(c)

 Electronic array 

methods
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Analysis of DNA Microarray Data
Previous Work

 Characteristics of data

Analysis of expression ratio based on each sample

Analysis of time-variant data

 Clustering

Self-organizing maps [Golub et al., 1999]

Singular value decomposition [Orly Alter et al., 2000]

 Classification

Support vector machines [Brown et al., 2000] 

 Gene identification

 Information theory [Stefanie et al., 2000]

 Gene modeling

Bayesian networks [Friedman et.al., 2000]
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DNA Microarray Data Mining

 Clustering

Find some groups of genes that show the similar pattern in some 

conditions.

PCA

SOM

 Genetic network analysis

Determine the regulatory interactions between genes and their 

derivatives.

Linear models

Neural networks

Probabilistic graphical models
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CAMDA-2000 Data Sets

 CAMDA

Critical Assessment of Techniques for Microarray Data Mining

Purpose: Evaluate the data-mining techniques available to the 
microarray community.

 Data Set 1

 Identification of cell cycle-regulated genes

Yeast Sacchromyces cerevisiae by microarray hybridization.

Gene expression data with 6,278 genes.

 Data Set 2

Cancer class discovery and prediction by gene expression 
monitoring.

Two types of cancers: acute myeloid leukemia (AML) and acute 
lymphoblastic leukemia (ALL).

Gene expression data with 7,129 genes.
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CAMDA-2000 Data Set 1
Identification of Cell Cycle-regulated Genes of the Yeast by 

Microarray Hybridization

 Data given: gene expression levels of 6,278 
genes spanned by time

  Factor-based synchronization: every 7 minute 
from 0 to 119 (18)

 Cdc15-based synchronization: every 10 minute 
from 10 to 290 (24)

 Cdc28-based synchronization: every 10 minute 
from 0 to 160 (17)

 Elutriation (size-based synchronization): every 
30 minutes from 0 to 390 (14)

 Among 6,278 genes

104 genes are known to be cell-cycle 
regulated

• classified into: M/G1 boundary (19), late G1  SCB 
regulated (14), late G1 MCB regulated (39), S-
phase (8), S/G2 phase (9), G2/M phase (15).

250 cell cycle–regulated genes might exist
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CAMDA-2000 Data Set 1
Characteristics of data ( Factor-based Synchronization)

 M/G1 boundary

 Late G1  SCB regulated

 Late G1 MCB regulated

 S Phase

 S/G2 Phase

 G2/M Phase
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CAMDA-2000 Data Set 2
Cancer Class Discovery and Prediction by Gene Expression 

Monitoring

 Gene expression data for cancer 
prediction

Training data: 38 leukemia samples 
(27 ALL , 11 AML)

Test data: 34 leukemia samples (20 
ALL , 14 AML)

Datasets contain measurements 
corresponding to ALL and AML 
samples from Bone Marrow and 
Peripheral Blood.

 Graphical models used:

Bayesian networks

Non-negative matrix factorization 

Generative topographic mapping
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Applications of GTM for Bio Data Mining (1)

 DNA microarray data provides the whole genomic 

view in a single chip. 

(Figure from http://www.gene-

chips.com/sample1.html)

- The intensity and color of each 

spot encode information on a 

specific gene from the tested 

sample.

- The microarray technology is 

having a significant impact on 

genomics study, especially on 

drug discovery and toxicological 

research.

http://www.gene-chips.com/sample1.jpg
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Applications of GTM for Bio Data Mining (2)

 Select cell cycle-regulated genes out of  6179 yeast 

genes. (cell cycle-regulated : transcript levels vary 

periodically within a cell cycle )

 There are 104 known cell cycle-regulated genes of 6 

clusters

S/G2 phase : 9  (train:5 / test:2)

S phase : 8 (Histones) (train:5 / test:3)

M/G1 boundary (SWI5 or ECB (MCM1) or STE12/MCM1 

dependent) : 19 (train:13 / test:6)

G2/M phase: 15 (train: 10 / test:5)

Late G1, SCB regulated : 14 (train: 9 / test:5)

Late G1, MCB regulated : 39 (train: 25 / test:12)

(M-G1-S-G2-M)
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[The comparison of entropies for 

each method]

[Clusters identified by various methods]
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Summary and Discussion

 Challenges of Artificial Intelligence and Machine Learning 

Applied to Biosciences

Huge data size

Noise and data sparseness

Unlabeled and imbalanced data

Dynamic Nature of DNA Microarray Data

 Further study for DNA Microarray Data by GTM

Modeling of dynamic nature

Active data selections 

Proper measure of clustering ability
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