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Outlines of Tutorial

1. Machine Learning and Bioinformatics

 Machine Learning

 Problems in Bioinformatics

 Machine Learning Methods

 Applications of ML Methods for Bio Data Mining

2. Graphical Models

 Bayesian Network

 Generative Topographic Mapping

 Probabilistic clustering

 NMF (nonnegative matrix factorization)
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Outlines of Tutorial

3. Other Machine Learning Methods

 Neural Networks

 K Nearest Neighborhood 

 Radial Basis Function

4. DNA Microarrays 

5. Applications of GTM for Bio Data Mining

 DNA Chip Gene Expression Data Analysis 

 Clustering the Genes

6. Summary and Discussion

*  References 
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1. Machine Learning and

Bioinformatics

knowledge
knowledge

Bio DB

Machine learning

Drug

Development
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research
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Machine Learning

 Supervised Learning

Estimate an unknown mapping from known input- output pairs

Learn fw from training set D={(x,y)} s.t.

Classification: y is discrete, categorical

Regression: y is continuous

 Unsupervised Learning

Only input values are provided

Learn fw from D={(x)} 

Compression

Clustering

)()( xxw fyf 

yf )(xw
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Machine Learning Methods

 Probabilistic Models

Hidden Markov Models

Bayesian Networks

Generative Topographic Mapping (GTM)

 Neural Networks

Multilayer Perceptrons (MLPs)

Self-Organizing Maps (SOM)

 Genetic Algorithms

 Other Machine Learning Algorithms

Support Vector Machines

Nearest Neighbor Algorithms

Decision Trees

http://en.wikipedia.org/wiki/Image:Hmm_temporal_bayesian_net.png
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Applications of ML Methods for Bio

Data Mining (1)

 Structure and Function Prediction

Hidden Markov Models

Multilayer Perceptrons

Decision Trees

 Molecular Clustering and Classification

Support Vector Machines

Nearest Neighbor Algorithms

 Expression (DNA Chip Data) Analysis: 

Self-Organizing Maps

Bayesian Networks

Generative Topographic Mapping

 Bayesian Networks

 Gene Modeling  Gene Expression Analysis

 [Friedman et al., 2000]
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Applications of ML Methods for Bio

Data Mining (2)
 Multi-layer Perceptrons

Gene Finding / Structure Prediction

Protein Modeling / Structure and Function Prediction

 Self-Organizing Maps (Kohonen Neural Network)

Molecular Clustering

DNA Chip Gene Expression Data Analysis

 Support Vector Machines

Classification of Microarray Gene Expression and Gene Functional 

Class

 Nearest Neighbor Algorithms

3D Protein Classification

 Decision Trees

Gene Finding: MORGAN system

Molecular Clustering
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2. Probabilistic Graphical Models

 Represent the joint probability distribution on 
some random variables in compact form.

Undirected probabilistic graphical models
• Markov random fields

• Boltzmann machines

Directed probabilistic graphical models
• Helmholtz machines

• Bayesian networks

 Probability distribution for some variables given 
values of other variables can be obtained in a 
probabilistic graphical model.

Probabilistic inference.
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Classes of Graphical Models

Graphical Models

- Boltzmann Machines 

- Markov Random Fields

- Bayesian Networks

- Latent Variable Models

- Hidden Markov Models

- Generative Topographic Mapping

- Non-negative Matrix Factorization

Undirected Directed
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 Bayesian Networks

A graphical model for probabilistic relationships among a set of 
variables

 Generative Topographic Mapping

A graphical model through a nonlinear relationship between the latent 

variables and observed features.  

(Bayesian Network)                                                                                  (GTM)



Bayesian Networks
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 Bayesian approach

 Bayesian networks

 Inferences in BN

 Parameter and structure learning

 Search methods for network

 Case studies

 Reference
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Introduction

 Bayesian network is a graphical network for expressing the 
dependency relations between features or variables

 BN can learn the casual relationships  for the understanding 
of the problem domain

BN offers an efficient way of avoiding the over fitting of the 
data (model averaging, model selection)  

Scores for network structure fitness: BDe, MDL, BIC
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Bayesian approach

 Bayesian probability: a person’s degree of belief 

 Thumbtack example: After N flips, probability of heads 

on the (N+1)th toss = ? 

 Classic analysis: estimate this probability from the N observations with 

low variance and bias

 Ex) ML estimator: choose     to maximize the likelihood 

 Bayesian approach: D is fixed and imagine all the possible     from this 

D
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Bayesian approach
 Bayesian approach:

Conjugate prior has posterior as the same family of 

distribution w.r.t. the likelihood distribution
 Normal likelihood - Normal prior - Normal posterior

 Binomial likelihood - Beta prior - Beta posterior

 Multinomial likelihood - Dirichlet prior- Dirichlet posterior

 Poisson likelihood - Gamma prior - Gamma posterior
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Bayesian approach
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 Bayesian networks represent statistical relationships 

among random variables (e.g. genes).

)()|()|(),|()(

),,,,(

EPADPBCPEABPAP

EDCBAP



- B and D are independent given A.

- B asserts dependency between A and E.

- A and C are independent given B.

Bayesian Networks (1)
-Architecture
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 BN = (S, P) consists a network structure S and  a set of 

local probability distributions P 
1
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• Structure can be found by relying on the prior knowledge of casual relationships

<BN for detecting credit card fraud>

Bayesian Networks (1)
-example
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 DAG (Directed Acyclic Graph)

 Bayesian Network: Network Structure (S) + Local   

Probability (P).

 Express dependence relations between variables

 Can use prior knowledge on the data (parameter)

Dirichlet for multinomial data 

Normal-Wishart for normal data     

 Methods of searching:

Greedy,  Reverse,  Exhaustive

Bayesian Networks (2)
-Characteristics
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 For  missing values:

 Gibbs sampling

 Gaussian Approximation

 EM

 Bound and Collapse  etc.

 Interpretations:  

 Depends on the prior order of nodes or prior structure.

 Local conditional probability

 Choice of nodes

 Overall nature of data

Bayesian Networks (3)
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Inferences in BN

 A tutorial on learning with Bayesian networks (David Heckerman)
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Inferences in BN (parameter learning)
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Parameter and structure learning
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Averaging over possible models: bottleneck in 

computations

 Model selection

 Selective model averaging

Predicting the next case:

Bde score
posterior
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Search method for network structure

 Greedy search : 

 First choose a network structure

 Evaluate (e) for all e  E and make the change e for which (e) is maximum. 

(E: set of eligible changes to graph, (e): the change in log score.) 

 Terminate the search when there is no e with  positive (e).

 Avoiding local maxima by simulated annealing 

 Initialize the system at some temperature T0

 Pick some eligible change e at random and evaluate p=exp((e)/T0)

 If p>1 make the change; otherwise make the change with probability p.

 Repeat this process  times or until make  changes 

 If no changes, lower the temperature and continue the process 

 Stop if the temperature is lowered more than  times
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Example
 A database is given and the possible structures are S1(figure) and 

S2(same with an arc added from Age to Gas) for fraud detection problem.
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Case studies (1)



28

Case studies (2)

PE: parental encouragement

SES: Socioeconomic status

CP: college plans
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Case studies (3)

 All network structures were assumed to be equally likely (structure 

where SEX and SES had parents or/and CP had children are 

excluded)

 SES has a direct influence on IQ is most suspicious result: new 

model is considered with a hidden variable pointing SES, IQ or 

SES, IQ, PE /and none or one or both of (SES-PE, PE-IQ) 

connections are removed.  

 2x1010 times more likely than the best model with no hidden 

variables.

 Hidden variable is influencing both socioeconomic status and IQ: 

some measure of ‘parent quality’. 
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 GTM is a non-linear mapping model between latent space 

and data space. 

Generative Topographic Mapping (1)

wxWxf

eWxfg
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 A complex data structure is modeled from an intrinsic 

latent space through a nonlinear mapping.

 t :   data point

 x :   latent point

 :   matrix of basis functions

W :   constant matrix

E  :  Gaussian noise

Generative Topographic Mapping (2)

EWxt  )(
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Generative Topographic Mapping (3)

 A distribution of  x induces a probability distribution  

in  the data space for  non-linear y(x,w).

 Likelihood  for the  grid of K points
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 Usually the latent distribution is assumed to be uniform 

(Grid).

 Each data point is assigned to a grid point probabilistically.

 Data can be visualized by projecting each data point onto the 

latent space to reveal interesting features

 EM algorithm for training. 

 Initialize parameter W for a given grid and basis function set.

 (E-Step) Assign each data point’s probability of belonging to each 

grid point.

 (M-Step) Estimate the parameter W by maximizing the corresponding

log likelihood of data.  

Until some convergence criterion is met.

Generative Topographic Mapping(4)
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K-Nearest Neighbor Learning

 Instance 

 points in the n-dimensional space

feature vector   <a1(x), a2(x),...,an(x)>

 distance 

 target function : discrete or real value

n
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 Training algorithm:

 For each training example (x,f(x)), add the example to the list 

training_examples

 Classification algorithm:

 Given a query instance xq to be classified,

• Lex x1...xk denote the k instances from training_examples that are nearest to xq

• Return
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Distance-Weighted N-N Algorithm

 Giving greater weight to closer neighbors

discrete case

real case
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Remarks on k-N-N Algorithm

 Robust to noisy training data

 Effective in sufficiently large set of training data

 Subset of instance attributes

 Dominated by irrelevant attributes

weight each attribute differently

 Indexing the stored training examples

kd-tree
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Radial Basis Functions

 Distance weighted regression and ANN

• where xu : instance from X
• Ku(d(xu,x)) : kernel function

 The contribution from each of the Ku(d(xu,x)) terms is localized to a region 
nearby the point xu : Gaussian Function

 Corresponding two layer network

 first layer : computes the values of the various Ku(d(xu,x))

 second layer : computes a linear combination of first-layer unit values.
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RBF network

 Training
construct kernel function
adjust weights

 RBF networks provide a global approximation to the target 

function, represented by a linear combination of many local 

kernel functions.

f(x)xf  ion   toapproximat   global : )(


uu xxxdKu   tolocalized is  terms)),((



Artificial Neural Networks



 Artificial neural network(ANN)

General, practical method for learning real-
valued, discrete-valued, vector-valued 
functions from examples

 BACPROPAGATION 알고리즘

Use gradient descent to tune network 
parameters to best fit a training set of 
input-output pairs

 ANN learning

Training example의 error에 강하다.

Interpreting visual scenes, speech 
recognition, learning robot control strategy



Biological motivation

 생물학적인 뉴런과의 유사성
 For 1011 neurons interconnected with 104 neurons, 10-3 switching times 

(slower than 10-10 of computer), it takes only 10-1 to recognize. 

병렬 계산(parallel computing)

분산 표현(distributed representation)

 생물학적인 뉴런과의 차이점
각뉴런의 출력: single constant vs complex time series of spikes 



ALVINN system

 Input: 30 x 32 grid of 
pixel intensities (960 
nodes)

 4 hidden units

 Output: direction of 
steering (30 units)

 Training: 5 min. of 
human driving 

 Test: up to 70 miles for 
distances of 90 miles on 
public highway. (driving 
in the left lane with other 
vehicles present) 



Perceptrons

 vector of real-valued input

 weights & threshold

 learning: choosing values for the 
weights



Perceptron의 표현력

 Hyperplane decision surface for linearly separable example

 many boolean functions(XOR 제외): 

(e.g.) AND : w1=w2=1/2, w0=-0.8

OR : w1=w2=1/2, w0=-0.3

 m-of-n function

 disjunctive normal form  (disjunction (OR) of a set of 
conjuctions (AND))



Perceptron rule

 유한번의 학습 후 올바른 가중치를 찾아내려면
충족되어야 할 사항

training example이 linearly separable

충분히 작은 learning rate



Gradient descent &
Delta rule

 Perceptron rule fails to converge for 
linearly non-separable examples

 Delta rule can overcome the difficulty of 
perceptron rule by using gradient descent 

 In the training of unthresholded perceptron.

training error is given as a function of 
weights:

 Gradient descent can search the hypothesis 
space of different types of continuously 
parameterized hypotheses. 
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Hypethesis space



Gradient descent

 gradient: steepest increase in E
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Gradient descent(cont’d)

 Training example의 linearly separable 여부
에 관계없이 하나의 global minimum을 찾는다.

 Learning rate가 큰 경우 overstepping의 문제
-> learning rate를 점진적으로 줄이는 방법을
사용하기도 한다.



Remark
 Perceptron rule

thresholded output

정확한 weight (perfect classification)

linearly separable

 Delta rule

unthresholded output

점근적으로 에러를 최소화하는 weight

non-linearly separable



Multilayer networks

 Nonlinear decision surface

 Multiple layers of linear units still produce only linear 
functions

 Perceptron’s output is not differentiable wrt. inputs  



Differential threshold unit

 Sigmoid function

nonlinear, differentiable
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BACKPROPAGATION
알고리즘

 Backpropagation algorithm learns the weights of multi-layer 

network by minimizing the squared error between network 

output values and target values employing gradient descent.

 For multiple outputs, the errors are sum of all the output errors. 
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 새로운 error의 정의

(xj, i : input from node i to node j.

j: error-like term on the node j)

xj,i



BACKPROPAGATION
알고리즘(cont’d)

 Multiple local minima

 Termination conditions

fixed number of iteration

error threshold

error of separate validation set



Variations of BACKPROPAGATION
알고리즘

 Adding momentum

직전의 loop에서의 weight 갱신이 영향을
미침

 Learning in arbitrary acyclic network
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BACKPROPAGATION rule
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 Training rule for output unit 

j

j

j

d

j

d

net

o

o

E

net

E



























outputsk

kk

jj

d ot
oo

E 2)(
2

1

)(
)(

)(2
2

1
)(

2

1 2

jj

j

jj

jjjj

jj

d ot
o

ot
otot

oo

E
















j

j

d

y

jj

j

j

j

j

net

E

eyoo
net

net

net

o




















 ))1/(1)(()1(

)(

jijjijjjj

ji

d
ji xxooot

w

E
w  




 )1()(



61

 Training rule for hidden unit 
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Convergence and local minima

 Only guarantees local minima

 This problem is not severe

 Algorithm is highly effective

 the more weights, the less severe local minima problem

 If weights are initialized to values near zero, the network will 
represent very smooth function (almost linear) in its inputs: 
sigmoid function is approx. linear when the weights are small.

 Common remedies for local minima:

 Add momentum term to escape the local minima.

 Use stochastic (incremental) gradient descent: different error 
surface for each example to prevent getting stuck

 Training of multiple networks and select the best one over a 
separate validation data set



Hidden layer representation

 Automatically discover useful representations at the 
hidden layers

 Allows the learner to invent features not explicitly 
introduced by the human designer. 











Generalization, overfitting, stopping 
criterion

 Terminating condition

 Threshold on the training error: poor strategy 

 Susceptible to overfitting: create overly complex decision 
surfaces that fit noise in the training data 

 Techniques to address the overfitting problem:

 Weight decay: decrease each weight by small factor 
(equivalent to modifying the definition of error to include 
a penalty term)

 Cross-validation approach: validation data in addition to 
the training data (lowest error over the validation set)

 K-fold cross-validation: For small training sets, cross 
validation is performed k different times and averaged (e.g. 
training set is partitioned into k subsets and then the 
mean iteration number is used.)





Face recognition

 for non-linearly separable

 unthresholded

 od 는 w에 대한 함수값



 Images of 20 different people/ 32images per person: varying 
expressions, looking directions, is/is not wearing sunglasses. 
Also variation in the background, clothing, position of face

 Total of 624 greyscale images. Each input image:120*128 
30*32 with each pixel intensity from  0 (Black) to 255 (White)

 Reducing computational demands

 mean value (cf, ALVINN: random)

 1-of-n output encoding

 More degree than single output unit

 The difference between the highest and second highest valued 
output can be used as a measure of confidence in the network 
prediction. 

 Sigmoid units cannot produce extreme values: avoid 0, 1 in the 
target values. <0.9, 0.1, 0.1, 0.1>

 2 layers, 3 units -> 90% success



Alternative error functions

 Adding a penalty term for weight magnitude

 Adding a derivative of the target function

 Minimizing the cross entropy of the network wrt. 
the target values. ( KL divergence: D(t,o)=tlog(t/o) )
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Recurrent networks
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3. DNA Microarrays 

 DNA Chip
 In the traditional "one gene in one experiment" method, the throughput is 

very limited and the "whole picture" of gene function is hard to obtain.

DNA chip hybridizes thousands of DNA samples of each gene on a glass 

with special cDNA samples. 

 It promises to monitor the whole genome on a single chip so that 

researchers can have a better picture of the the interactions among 

thousands of genes simultaneously. 

 Applications of DNA Microarray Technology

Gene discovery

Disease diagnosis 

Drug discovery: Pharmacogenomics

Toxicological research: Toxicogenomics
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Genes and Life

 It is believed that thousands of genes and their 

products (i.e., RNA and proteins) in a given living 

organism function in a complicated and 

orchestrated way that creates the mystery of life.

 Traditional methods in molecular biology work on 

a “one gene in one experiment” basis.

 Recent advance in DNA microarrays or DNA 

chips technology makes it possible to measure the 

expression levels of thousands of genes 

simultaneously.
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DNA Microarray Technology

 Photolithoraphy  

methods (a)

 Pin microarray 

methods (b)

 Inkjet methods 

(c)

 Electronic array 

methods
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Analysis of DNA Microarray Data
Previous Work

 Characteristics of data

Analysis of expression ratio based on each sample

Analysis of time-variant data

 Clustering

Self-organizing maps [Golub et al., 1999]

Singular value decomposition [Orly Alter et al., 2000]

 Classification

Support vector machines [Brown et al., 2000] 

 Gene identification

 Information theory [Stefanie et al., 2000]

 Gene modeling

Bayesian networks [Friedman et.al., 2000]
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DNA Microarray Data Mining

 Clustering

Find some groups of genes that show the similar pattern in some 

conditions.

PCA

SOM

 Genetic network analysis

Determine the regulatory interactions between genes and their 

derivatives.

Linear models

Neural networks

Probabilistic graphical models
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CAMDA-2000 Data Sets

 CAMDA

Critical Assessment of Techniques for Microarray Data Mining

Purpose: Evaluate the data-mining techniques available to the 
microarray community.

 Data Set 1

 Identification of cell cycle-regulated genes

Yeast Sacchromyces cerevisiae by microarray hybridization.

Gene expression data with 6,278 genes.

 Data Set 2

Cancer class discovery and prediction by gene expression 
monitoring.

Two types of cancers: acute myeloid leukemia (AML) and acute 
lymphoblastic leukemia (ALL).

Gene expression data with 7,129 genes.
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CAMDA-2000 Data Set 1
Identification of Cell Cycle-regulated Genes of the Yeast by 

Microarray Hybridization

 Data given: gene expression levels of 6,278 
genes spanned by time

  Factor-based synchronization: every 7 minute 
from 0 to 119 (18)

 Cdc15-based synchronization: every 10 minute 
from 10 to 290 (24)

 Cdc28-based synchronization: every 10 minute 
from 0 to 160 (17)

 Elutriation (size-based synchronization): every 
30 minutes from 0 to 390 (14)

 Among 6,278 genes

104 genes are known to be cell-cycle 
regulated

• classified into: M/G1 boundary (19), late G1  SCB 
regulated (14), late G1 MCB regulated (39), S-
phase (8), S/G2 phase (9), G2/M phase (15).

250 cell cycle–regulated genes might exist
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CAMDA-2000 Data Set 1
Characteristics of data ( Factor-based Synchronization)

 M/G1 boundary

 Late G1  SCB regulated

 Late G1 MCB regulated

 S Phase

 S/G2 Phase

 G2/M Phase
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CAMDA-2000 Data Set 2
Cancer Class Discovery and Prediction by Gene Expression 

Monitoring

 Gene expression data for cancer 
prediction

Training data: 38 leukemia samples 
(27 ALL , 11 AML)

Test data: 34 leukemia samples (20 
ALL , 14 AML)

Datasets contain measurements 
corresponding to ALL and AML 
samples from Bone Marrow and 
Peripheral Blood.

 Graphical models used:

Bayesian networks

Non-negative matrix factorization 

Generative topographic mapping
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Applications of GTM for Bio Data Mining (1)

 DNA microarray data provides the whole genomic 

view in a single chip. 

(Figure from http://www.gene-

chips.com/sample1.html)

- The intensity and color of each 

spot encode information on a 

specific gene from the tested 

sample.

- The microarray technology is 

having a significant impact on 

genomics study, especially on 

drug discovery and toxicological 

research.

http://www.gene-chips.com/sample1.jpg
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Applications of GTM for Bio Data Mining (2)

 Select cell cycle-regulated genes out of  6179 yeast 

genes. (cell cycle-regulated : transcript levels vary 

periodically within a cell cycle )

 There are 104 known cell cycle-regulated genes of 6 

clusters

S/G2 phase : 9  (train:5 / test:2)

S phase : 8 (Histones) (train:5 / test:3)

M/G1 boundary (SWI5 or ECB (MCM1) or STE12/MCM1 

dependent) : 19 (train:13 / test:6)

G2/M phase: 15 (train: 10 / test:5)

Late G1, SCB regulated : 14 (train: 9 / test:5)

Late G1, MCB regulated : 39 (train: 25 / test:12)

(M-G1-S-G2-M)
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[The comparison of entropies for 

each method]

[Clusters identified by various methods]
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Summary and Discussion

 Challenges of Artificial Intelligence and Machine Learning 

Applied to Biosciences

Huge data size

Noise and data sparseness

Unlabeled and imbalanced data

Dynamic Nature of DNA Microarray Data

 Further study for DNA Microarray Data by GTM

Modeling of dynamic nature

Active data selections 

Proper measure of clustering ability
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