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Machine Learning

e Supervised Learning

» Estimate an unknown mapping from known input- output pairs
» Learn f,, from training set D={(x,y)} s.t. M
» Classification: y is discrete, categorical
> Regression: y is continuous
e Unsupervised Learning
» Only input values are provided

» Learn f, from D={(x)} f (X)=y

> Compression
» Clustering




Machine Learning Methods

e Probabilistic Models
» Hidden Markov Models
> Bayesian Networks
> Generative Topographic Mapping (GTM)

e Neural Networks
» Multilayer Perceptrons (MLPs)
» Self-Organizing Maps (SOM)

e Genetic Algorithms

e Other Machine Learning Algorithms
» Support Vector Machines

» Nearest Neighbor Algorithms
» Decision Trees



http://en.wikipedia.org/wiki/Image:Hmm_temporal_bayesian_net.png

Applications of ML Methods for Bio

Data Mining (1)

Structure and Function Prediction
» Hidden Markov Models
> Multilayer Perceptrons
» Decision Trees

Molecular Clustering and Classification
» Support Vector Machines
> Nearest Neighbor Algorithms

Expression (DNA Chip Data) Analysis:
» Self-Organizing Maps
> Bayesian Networks
> Generative Topographic Mapping
Bayesian Networks

> Gene Modeling = Gene Expression Analysis
» [Friedman et al., 2000]



Applications of ML Methods for Bio
Data Mining (2)

e Multi-layer Perceptrons

» Gene Finding / Structure Prediction

» Protein Modeling / Structure and Function Prediction
e Self-Organizing Maps (Kohonen Neural Network)

» Molecular Clustering

» DNA Chip Gene Expression Data Analysis
e Support Vector Machines

» Classification of Microarray Gene Expression and Gene Functional
Class

e Nearest Neighbor Algorithms
» 3D Protein Classification

e Decision Trees
» Gene Finding: MORGAN system
» Molecular Clustering



2. Probabllistic Graphical Models

e Represent the joint probability distribution on
some random variables in compact form.

» Undirected probabilistic graphical models
« Markov random fields
 Boltzmann machines

» Directed probabilistic graphical models
» Helmholtz machines
« Bayesian networks

e Probability distribution for some variables given
values of other variables can be obtained in a
probabilistic graphical model.

» Probabilistic inference.



Classes of Graphical Models

Graphical Models

Undirected

Directed

- Boltzmann Machines
- Markov Random Fields

- Bayesian Networks

- Latent Variable Models

- Hidden Markov Models

- Generative Topographic Mapping
- Non-negative Matrix Factorization
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e Bayesian Networks

A graphical model for probabilistic relationships among a set of

variables

e Generative Topographic Mapping

A graphical model through a

variables and observed features.

~n O

relationship between the latent

O O

OO0
O

O

O O

(Bayesian Network)

(GTM)
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Introduction

Bayesian network is a graphical network for expressing the
dependency relations between features or variables

BN can learn the casual relationships for the understanding
of the problem domain

BN offers an efficient way of avoiding the over fitting of the
data (model averaging, model selection)

Scores for network structure fitness: BDe, MDL, BIC
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Bayesian approach

Bayesian probability: a person’s degree of belief
Thumbtack example: After N flips, probability of heads

on the (N+1)" toss = ?

= Classic analysis: estimate this probability from the N observations with
low variance and bias

E(@)=2p(D[6)d (D)

Var(¢') =3 p(D|6)(¢ (D)~ E(8))

= Ex) ML estimator: choose [l to maximize the likelihood p(D|0)
= Bayesian approach: D is and imagine all the possiblefg] from this

SN - () = [0p(0|D,h)do

15



Bayesian approach

Bayesian approach:
posterior prior likelthood

ST AL POIEIP(DI6.5)]_p@lo) 0'(-6)

p(D|&) p(D[<)
p(D|&)=[p(D|6,&)p(@|&)dE (marginal likelihood)

p(X ,=heads|D,&)=[p(X,  =heads|d,&)p(@|D,&E)do
=[6p(0]D,&)dd =E(6)
Conjugate prior has posterior as the of
distribution w.r.t. the likelihood distribution

= Normal likelihood - Normal prior - Normal posterior

= Poisson likelihood - Gamma prior - Gamma posterior

p(x,0|D) = p(x|6,D)p(d| D) = p(x|9)p(¢| D)
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Bayesian approach

p(X =Head |6,&) =6,
')

p(@|&)=Beta(@|e,,a,) = (@)

Hah—l(l_ e)at—l’ (a:ah + at)

I+ N)

PO ) = ko (e +1)

gathh—l (1_ e)aﬁt*l — Beta(g | a, + h, at + t)

[6 Beta(6| o, ,)d0 =
a

p(X,. =heads|D,&) =] p(X,. =heads|6,&)p(@|D,&)do = +I:I]
o+

p(x = X" |0,§):0k’ k:]_’...’r

N ) NP
P(O1£)=Dir(@a, ) = 0 1600 (@=Th.) (orion)

p(0@|D,&)=Dir(0|a, +N,,---,a + N ) (posterior)

DX =x|D,&)=[0Dir@®]e + N, a +N)do=5" N,
a+N
(r(a)N)lLIF(lo_{k(Jr )Nk) (marginal likelihood or evidence)
o+ k=1 Q,

P(D]e) =+



Bayesian Networks (1)
-Architecture

e Bayesian networks represent statistical relationships
among random variables (e.g. genes).

- B and D are independent given A.
G o - B asserts dependency between A and E.

- A and C are independent given B.

OO

P(A,B,C,D,E)
= P(A)P(B| A E)P(C|B)P(D| A)P(E)
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Bayesian Networks (1) memssmarsszmes

= P(X1 | X21 Xs)P(Xz | X3)P(X3)
-example
BN = (S, P) consists a network structure S and a set of

local probability distributions P |88 =H p(x |pa)

n(X) :11[ (X | X,---,x ) (chain rule) <BN for detecting credit card fraud>
i1 L - (@=<30)=0.25
p(xi |X1””’Xi_1) ~ p(xi |7;i) p(f=yes) = 0..00001 i(zzzso-s =40 p(s=male) = 0.5

p() =TI P(x, | 7)

(1) order variables: (F,A,S,G,J),

note : search of n! cases in the worst case
(2) find 7z :

p(al f)=p(a)

p(s| f,a)=p(s)

p(g|f.a,s)=p(g|f)
p(jlf.as,9)=p(J|f as)

plg=yes/f=yes)=0.2 p(i=ves|f=ves,a=*s=*) = 0.05
plg=yes/f=no)=0.01 p(i=ves/f=no,a=<30,s=male) = 0..0001
o Tt G T e e p(j=ves/f=no,a=30-50,s=male) = 0.0004
1 no no no 30-50 female p(]-:y(_?S[}v:H()'a:>50,S :fnale) - 0.0002

2 no no no 30-50 male . - -

3 | ves e yes 550 male p(j :yeS[}‘ =no,a=<30,s=female) = 0..0005

4 0 30-50 male i —noo[f—= = — o >y —
ves/f=no,a=30-50,s=female) = 0.002

no ves no <30 female p(] } / f ! ’ ‘f )

6 no no no <30 female

7 >50 male

p(j=ves/f=no,a=>50,s=female) = 0.001

yes 30-50 female
no ves no <30  male
<30 female

» Structure can be found by relying on the of casual relationships




Bayesian Networks (2)
-Characteristics

e DAG (Directed Acyclic Graph)

e Bayesian Network: Network Structure (S) + Local
Probability (P).

e EXxpress dependence relations between variables

e Can use prior knowledge on the data (parameter)
» Dirichlet for multinomial data
> Normal-Wishart for normal data

e Methods of searching:
Greedy, Reverse, Exhaustive
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Bayesian Networks (3)

e For missing values:
> Gibbs sampling
> Gaussian Approximation
> EM
» Bound and Collapse etc.

e Interpretations:
4 Depends on the prior order of nodes or prior structure.

» Local conditional probability
» Choice of nodes
» Overall nature of data

21



Inferences in BN

p(f.as,0.)) _ p(f.as,9,))
p(as.g.j)) X.p(f'asg,])
p(F)p@ps)p(gl f)p(ilf.as)
2ep(f)p@)p(s)p(gl F)plilfas)
__ p(H)p(glf)pdlf.as)

2 p(f)p(g] F)pUI T as)

p(f |a,S,g,j)=

p(fla,s,g,]))=

A tutorial on learning with Bayesian networks (David Heckerman)
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Inferences in BN (parameter learning)
p(x16,,5") =11p(x |Pa,.8,S")
p(X' |pa’,6,8")=0, >0, 8,=(6,,.6,)

X hasr possible discrete values x,---,x" (k € {1,---,r}) Crraud ) Caee D
pa has [],..r =q, discrete combination values (j € {1,---,9.})

[p(X,,=heads|D,&) = p(X,, =heads[0,5)p(0] D,5)d0 =[0p(d|D,5)do = E(0)]

a +N,

Q

e | Fraud Gas Jewelry

p(X ,=x"|D,&)=[0Dir(0|c,+N,---, + N )dOd =

Age

o+ N
p(@. |S") :Hf‘[ p(@, |S") (assume 0 's are mutually independent)

p(e,|D,S") =111 p(®,|D,S")

ves

R = I V-

—
(=)

30-50  female

30-50
>50
30-50

<30 emale
<30 female

>50

30-50  female

<30

<30 emale

p@®,|D,S")=Dir(0, |, +N, -, +N, )
p(X..|D,S")=[116,P(8,|D.S")d6, =TT, p(®, | D,S")do,

p(x,.1D,S") =T]

+ N N
%_N.,k (where a,= Y, , N, =X, N_, j is pre-chosen)

p(Xy. =X*|D,&) = [6,Dir(®] &y + Ny, -+, e, + N, )d0 =

o, + N,
a+N




Parameter and structure learning

Predicting the next case: p(XN o | D) = Z p(XN " S’ | D) = Z p(XN " | D, Sh) p(S“ | D)

=21p(S"|D)

p(S"| D)= p(S’ DS“/p(D) (BD score)
* marginal likelihood p(D|S")
') 1LII“(05k+Nk)
INa+N)«= TI(e)
I'(e,) ~T(a,+N,)

P18 =1 e S T Ty

posterior
Bde score

p(D[&) =

Averaging over possible models: bottleneck in
computations

= Model selection
= Selective model averaging
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Search method for network structure

Greedy search :

= First choose a network structure

= Evaluate A(e) for all e € E and make the change e for which A(e) is maximum.
(E: set of eligible changes to graph, A(e): the change in log score.)

= Terminate the search when there is no e with positive A(e).

Avoiding local maxima by simulated annealing
= Initialize the system at some temperature T,
= Pick some eligible change e at random and evaluate p=exp(A(e)/T,)
= |f p>1 make the change; otherwise make the change with probability p.
= Repeat this process o times or until make 3 changes
= |f no changes, lower the temperature and continue the process
= Stop if the temperature is lowered more than & times

25



Example

A database is given and the possible structures are S,(figure) and
S,(same with an arc added from Age to Gas) for fraud detection problem.

n

(S'1D) = p(S")P(DIS")/ P(D), p(DIS") =TT 21"

+ Ni,-k)

ijk

i=1 j=1 F(a + N) k=1 F(a”k)

p(XN + | D) z p(XN+1’S |D) Z p(XN+1 D ShSh 2 p(XN+1 D S ) 11[ ”k

<o+ N
p(S'|D)=0.26, p(S;|D)=0.74,
p(x,, |D)=0.26p(x,  |D,S')+0.74p(x .| D,S))

Fraud Gas Jewelry Age Sex
female
male
male
male
female
female
male
female

male

female
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Case studies (1)

6]
O

©
ONOR6)

(b)

©
© &
ORY
ONO
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Case studies (2)

GO
PE: parental encouragement

@& ' ' SES: Socioeconomic status
e

CP: college plans

log p(D|S!") =-45653 log p(D|S!) = -45699
p(S!D)=10 p(SHDy=12x10"

PUH=0) = 0,63
plH=1)y=037

H  p{(SES=high|H)

low (.088
high 0.51

H  p(1Q=high|PE.H)

0 0.098
| 0.22
0 0.21
| 0.49

pimale) = (01.48

SES Q PE P(CP=yes|SES.IQ.PE)
low low low 0.011

SES SEX  p(PE=high|SES.SEX) }2:: t]ﬁ:; []]ég;il :H 32
low male 0.32 low high high 0.53
low female 0.166 high low low 0.093
high male 0.86 high low high 0.39
high female 0.81 log p(sa‘l ‘ D) ~ _45629 high high low 0.24

high high high 0.84




Case studies (3)

All network structures were assumed to be equally likely (structure
where SEX and SES had parents or/and CP had children are
excluded)

SES has a direct influence on 1Q Is most suspicious result: new
model is considered with a hidden variable pointing SES, 1Q or

SES, 1Q, PE /and none or one or both of (SES-PE, PE-IQ)
connections are removed.

2x10%%times more likely than the best model with no hidden
variables.

Hidden variable is influencing both socioeconomic status and 1Q:
some measure of ‘parent quality’.

VAY



Generative Topographic Mapping (1)

e GTM is a non-linear mapping model between latent space
and data space.

LATENT hlﬂl-:':i'E.:I..
-

[
.'- e
HIGH DIMENSIDMNAL GENE EX FRESST DORLAIT

g=f(x;W)+e

f(X;W) =Dd(x)'w

T4a n-l:'lh-l:;:lr hlapping th raugh =k ;¥

___'-___-

LATENI SFACE 7

30



Generative Topographic Mapping (2)

e A complex data structure is modeled from an intrinsic
latent space through a nonlinear mapping.

t=d(x)W +E

» t : data point

» x : latent point

» @ : matrix of basis functions
» W : constant matrix

» E : Gaussian noise

31



Generative Topographic Mapping (3)

e Adistribution of X induces a probability distribution
In the data space for non-linear y(x,w).

p(tlx, W, 8) = N(y(x,W),5)

o\ —Df2 . D
(z—i) exp {— g Y (ta — yalx, W}y

)

32



Generative Topographic Mapping(4)

e Usually the latent distribution is assumed to be uniform
(Grid).

e Each data point is assigned to a grid point probabilistically.

e Data can be visualized by projecting each data point onto the
latent space to reveal interesting features

e EM algorithm for training.
» Initialize parameter W for a given grid and basis function set.

» (E-Step) Assign each data point’s probability of belonging to each
grid point.

» (M-Step) Estimate the parameter W by maximizing the corresponding
log likelihood of data.

» Until some convergence criterion is met.
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K-Nearest Neighbor Learning

e Instance
» points in the n-dimensional space P&
» feature vector <ai(X), ax(X),...,an(X)>

e distance

34



e Training algorithm:
» For each training example (x,f(x)), add the example to the list
training_examples

e Classification algorithm:

> Given a query instance Xq to be classified,
« Lex Xui...Xk denote the k instances from training_examples that are nearest to Xq
* Return

f (Xs) «—argmax i o(v, f(x))

where 6(a,b) =1if a = b and where 6(a, b) = 0 otherwise
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Distance-\Weighted N-N Algorithm

e Giving greater weight to closer neighbors
» discrete case

36



Remarks on k-N-N Algorithm

Robust to noisy training data
Effective in sufficiently large set of training data
Subset of instance attributes
Dominated by irrelevant attributes
» weight each attribute differently
Indexing the stored training examples
> kd-tree

37



Radial Basis Functions

Distance weighted regression and ANN

F(X) = Wo+ 3 WoKa(d (X, X))

« where xu : instance from X
« Ku(d(xu,x)) : kernel function

The contribution from each of the Ku(d(xu,x)) terms is localized to a region
nearby the point xu : Gaussian Function

Corresponding two layer network
> first layer : computes the values of the various Ku(d(xu,x))
» second layer : computes a linear combination of first-layer unit values.

38



RBF network

e Training
> construct kernel function
» adjust weights

f(x):global approximation to f(x)

Ku(d (x., X)) terms is localized to x.

e RBF networks provide a global approximation to the target
function, represented by a linear combination of many local
kernel functions.
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Artificial Neural Networks



o Artificial neural network(ANN)

» General, practical method for learning real-
valued, discrete-valued, vector-valued
functions from examples

e BACPROPAGATION €1 2|&

» Use gradient descent to tune network
parameters to best fit a training set of
input-output pairs

e ANN learning

» Training example2| error0| Z5}iC}.

» Interpreting visual scenes, speech
recognition, learning robot control strategy



Biological motivation

o Y=o1HQ RO FAHS

» For 10" neurons interconnected with 10% neurons, 1072 switching times
(slower than 10710 of computer), it takes only 107! to recognize.

> H= A L(parallel computing)
» 24 B S(distributed representation)

R EIRNES

=: single constant vs complex time series of spikes

o d=25HQ
4

[ -
—|I- T

¥ T

o)



ALVINN system

e Input: 30 x 32 grid of
: . pixel intensities (960
e T nodes)
e e 4 hidden units
S e Output: direction of

steering (30 units)

e Training: 5 min. of
human driving

e Test: up to 70 miles for
distances of 90 miles on
public highway. (driving
In the left lane with other
vehicles present)




Perceptrons

Lif 2w, >0
“h i '

ctherwi se

1 if wWo + UL+ W, > 0
—1 otherwise.

e vector of real-valued input
e weights & threshold

e learning: choosing values for the
weights



Perceptron?l| H91=

e Hyperplane decision surface for linearly separable example
e many boolean functions(XOR H|2|):
(e.g.) AND : w1=w2=1/2, w0=-0.8
OR : wl1=w2=1/2, w0=-0.3
e m-of-n function

e disjunctive normal form (disjunction (OR) of a set of
conjuctions (AND))



Perceptron rule

Wy — w; + Aw;

where
Aw; =t — o)x;

Where:

e ¢t = c(¥) is target value

e 0 18 perceptron output

e 77 is small constant {(e.g., .1) called learning rate

ottHO| st5 £ ZHHE 7[5 XS HOU=H
ZE|O{OF T At

training exampleO| linearly separable
=S£0| 22 learning rate

- v0|)+=I0



Gradient descent &
Delta rule

e Perceptron rule fails to converge for
linearly non-separable examples

e Delta rule can overcome the difficulty of
perceptron rule by using gradient descent

e In the training of unthresholded perceptron.

training error is given as a function of

weights:

e Gradient descent can search the hypothesis
space of different types of continuously
parameterized hypotheses.



Hypethesis space

OE JOF OF

VE@ = |—, — ...
1= 6wy 8wy Bw,

Training rule:

Aw = —nVEWw

OF

Aw; = —ng




Gradient descent




GRADIENT-DESCENT(¢raining examples,n)

Each training example is a pair of the form
(Z,t), where T is the vector of input values,
and t s the target outpul value. 1 s the
learning rote (e.g., .05).

e Initialize each w; to some small random value
e Until the termination condition is met, Do

— Initialize each Aw; to zero.
— For each {£,t) in training examples, Do

* Input the instance Z to the unit and
compute the output o

* For each linear unit weight w;, Do
Aw; +— Aw; +1(t — 0)z;
— For each linear unit weight w;, Do

W; — w; + A'w,



Gradient descent(cont’d)

e Training example?| linearly separable 0| &
o 2tA|810| stLt2| global minimums #=C}.

e Learning rate7l 2 4% oversteppln o =Hl
-> learning rateg HZXIHCE F0|= YHS
ALE3917| = ohCt.



Remark

e Perceptron rule
» thresholded output
> A5t weight (perfect classification)
» linearly separable
e Delta rule
> unthresholded output
r HZ2HCoE 0|2 & Z|2A315H= weight

» non-linearly separable



Multilayer networks

head hid

A haad
- hid

+ had

v had

%2 hawed
~ heacd
o haad
« hud

* who'd
+ hapd

1400

Nonlinear decision surface

Multiple layers of linear units still produce only linear
functions

Perceptron’s output is not differentiable wrt. inputs



Differential threshold unit

“ E )—'(-JC)—"

Agt= ;.Dmi x; :.—Gfﬂ ”_

l+€

o(x) is the sigmoid function
1
l+e=

Nice property: dg["“ = o({z)(1 — a(z))

e Sigmoid function
» honlinear, differentiable



BACKPROPAGATION
% 02|15

e Backpropagation algorithm learns the weights of multi-layer
network by minimizing the squared error between network
output values and target values employing gradient descent.

e For multiple outputs, the errors are sum of all the output errors.

E(W) = z z (tg — Okd)

d eD keoutputs
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Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit &

0 — ox{1l — o) (tx — o)

3. For each hidden unit %

6?1. — Oh(_l — oh) 2. ’wh,kak
kEouiputs

4. Update each network weight 2o, ;

where

(x;, ;- Input from node 1 to node J.

51: error-like term on the node j)



BACKPROPAGATION
e S (cont’d)

e Multiple local minima

e Termination conditions
» fixed number of iteration
» error threshold
> error of separate validation set



Variations of BACKPROPAGATION

S

e Adding momentum
> 22| loopWl M2 weight H4l0] Bek=
[EY
Aw;; () =10 ;X

+aAw;; (n—1)

Ji

e Learning in arbitrary acyclic network

5, «<0,(1-0,) > w,S  (multilayer)

selayer m+1

5, «<0,(1-0) D> w,5 (acyclic

seDownstream(r)




BACKPROPAGATION rule

AW, = -7 25“' (update of the weight frominput i to unit j)

ji

E, (W) E% Z(tk —0,)* (the error on training example d)

keoutputs

(net); = Zi w;X;; (the weighted sum of inputs for unit j)

(&g 0, =2 W;X;)
OE, _ OE, Onet  OF,
ow; onet; ow;  onet,

IL

Ji

96
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e Training rule for output unit

ok, @ 60,—
é?netj 8oj anetj

00;  do(net;)
onet,  onet,
ok

et 0

net,

=0,(1-0;)

(o(y)=1/1+e™))
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e Training rule for hidden unit

ok ok, onet onet
d _ Z d k — Z _5k K
anetj keDownstream( j) 8netk anet' keDownstream( j) anetj

onet, 00, 5.0

= 2 =4 =2 o anejt

keDownstream( j) ao anEt keDownstream( j)

= > -5Ww0;(1-0))

keDownstream( j)

61



But we know:
dog  Oo(nety)

— — 1 —
Onety Onety 2 0a)

Onety  O(W - Zq
8’w¢' - 3w¢'

) — Lid

, Z (ta = 0a)od(l — 0a)id




Convergence and local minima

e Only guarantees local minima
> This problem is not severe
e Algorithm is highly effective
e the more weights, the less severe local minima problem

e If weights are initialized to values near zero, the network will
represent very smooth function (almost linear) in its inputs:
sigmoid function is approx. linear when the weights are small.

e Common remedies for local minima:

» Add momentum term to escape the local minima.

» Use stochastic (incremental) gradient descent: different error
surface for each example to prevent getting stuck

> Training of multiple networks and select the best one over a
separate validation data set



Hidden layer representation

e Automatically discover useful representations at the
hidden layers

e Allows the learner to invent features not explicitly
introduced by the human designer.



A network:

Learned hidden layer representation:
Input Hidden Output

Values
89 .04 .08
.01 .11 .88
01 .97 .27
99 97 .71
03 .05 .02
22 .99 .99
80 .01 .98
60 .94 .01

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

106000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

R R 2 I A
R R 2 I A




Sum of squared errors for each cutput unit




Hidden unit encoding for input 01000000




Weights from inputs to one hidden unit




Generalization, overfitting, stopping
criterion

e Terminating condition
» Threshold on the training error: poor strategy
> Susceptible to overfitting: create overly complex decision
surfaces that fit noise in the training data
e Techniques to address the overfitting problem:

e Weight decay: decrease each weight by small factor
(equivalent to modifying the definition of error to include
a penalty term)

e Cross-validation approach: validation data in addition to
the training data (lowest error over the validation set)

e K-fold cross-validation: For small training sets, cross
validation is performed k different times and averaged (e.g.
training set is partitioned into k subsets and then the
mean iteration number is used.)



0.0L
0.009
0.00%
0.007
0.006
0.005
0.00M
0.003
0.002

Emorversus weight updates (example 1)

Training set error
Walidation set errot

5000 LOoDO L5000 20000
Murmber of weight updares

Error versus weightupdates {(example 2)
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Face recognition




Images of 20 different people/ 32images per person: varying
expressions, looking directions, is/is not wearing sunglasses.
Also variation in the background, clothing, position of face

Total of 624 greyscale images. Each input image:120*128 >
30*32 with each pixel intensity from 0 (Black) to 255 (White)
» Reducing computational demands
» mean value (cf, ALVINN: random)

1-of-n output encoding
» More degree than single output unit

» The difference between the highest and second highest valued
output can be used as a measure of confidence in the network
prediction.

» Sigmoid units cannot produce extreme values: avoid 0, 1 in the
target values. <0.9, 0.1, 0.1, 0.1>

2 layers, 3 units -> 90% success



Alternative error functions

e Adding a penalty term for weight magnitude

(3tm 30&:{):

t(—ﬂf + E p
(tra — Ord)* + 1 o ol

D kcoutputs JEinputs

e Minimizing the cross entropy of the network wrt.
the target values. ( KL divergence: D(t,0)=Xtlog(t/0) )

- > tylogo, +(1—-t,)log(l-o;)
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Recurrent networks
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3. DNA Microarrays

e DNA Chip

» In the traditional "one gene in one experiment" method, the throughput is
very limited and the "whole picture" of gene function is hard to obtain.

» DNA chip hybridizes thousands of DNA samples of each gene on a glass
with special cDNA samples.

> It promises to monitor the whole genome on a single chip so that
researchers can have a better picture of the the interactions among
thousands of genes simultaneously:.

e Applications of DNA Microarray Technology
> Gene discovery
» Disease diagnosis
» Drug discovery: Pharmacogenomics
» Toxicological research: Toxicogenomics
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Genes and Life

e It is believed that thousands of genes and their
products (i.e., RNA and proteins) in a given living
organism function in a complicated and
orchestrated way that creates the mystery of life.

e Traditional methods in molecular biology work on
a “one gene 1n one experiment’ basis.

e Recent advance in DNA microarrays or DNA
chips technology makes it possible to measure the
expression levels of thousands of genes
simultaneously.
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DNA Microarray Technology

e Photolithoraphy
methods (a)

e Pin microarray
methods (b)

e Inkjet methods
©,

e Electronic array
methods

7



Analysis of DNA Microarray Data

Previous Work

Characteristics of data
> Analysis of expression ratio based on each sample
> Analysis of time-variant data
Clustering
» Self-organizing maps [Golub et al., 1999]
» Singular value decomposition [Orly Alter et al., 2000]
Classification
» Support vector machines [Brown et al., 2000]
Gene identification
» Information theory [Stefanie et al., 2000]
Gene modeling
» Bayesian networks [Friedman et.al., 2000]
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DNA Microarray Data Mining

e Clustering

» Find some groups of genes that show the similar pattern in some
conditions.

» PCA
> SOM

e Genetic network analysis

» Determine the regulatory interactions between genes and their
derivatives.

» Linear models
» Neural networks
» Probabilistic graphical models
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CAMDA-2000 Data Sets

e CAMDA

» Critical Assessment of Techniques for Microarray Data Mining

» Purpose: Evaluate the data-mining techniques available to the
microarray community.

e Data Set 1
» Identification of cell cycle-regulated genes
» Yeast Sacchromyces cerevisiae by microarray hybridization.
> Gene expression data with 6,278 genes.

e Data Set 2

» Cancer class discovery and prediction by gene expression
monitoring.

» Two types of cancers: acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL).

> Gene expression data with 7,129 genes.
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CAMDA-2000 Data Set 1

ldentification of Cell Cycle-regulated Genes of the Yeast by
Microarray Hybridization

e Data given: gene expression levels of 6,278
genes spanned by time

» o Factor-based synchronization: every 7 minute
from 0 to 119 (18)

» Cdc15-based synchronization: every 10 minute
from 10 to 290 (24)

» Cdc28-based synchronization: every 10 minute
from 0 to 160 (17)

» Elutriation (size-based synchronization): every
30 minutes from 0 to 390 (14)

e Among 6,278 genes

» 104 genes are known to be cell-cycle
regulated

« classified into: M/G1 boundary (19), late G1 SCB
regulated (14), late G1 MCB regulated (39), S-
phase (8), S/G2 phase (9), G2/M phase (15).

» 250 cell cycle—regulated genes might exist
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CAMDA-2000 Data Set 1

Characteristics of data (o Factor-based Synchronization)

e M/G1 boundary e S Phase
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CAMDA-2000 Data Set 2

Cancer Class Discovery and Prediction by Gene Expression

Monitoring
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e Gene expression data for cancer
prediction

» Training data: 38 leukemia samples
(27 ALL , 11 AML)

» Test data: 34 leukemia samples (20
ALL, 14 AML)

» Datasets contain measurements
corresponding to ALL and AML
samples from Bone Marrow and
Peripheral Blood.

e Graphical models used:
> Bayesian networks
> Non-negative matrix factorization

> Generative topographic mapping
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Applications of GTM for Bio Data Mining (1)

e DNA microarray data provides the whole genomic
VIEW IN a smqle chip.
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(Figure from http://www.gene-
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Applications of GTM for Bio Data Mining (2)

e Select cell cycle-regulated genes out of 6179 yeast
genes. (cell cycle-regulated : transcript levels vary
periodically within a cell cycle )

e There are 104 known cell cycle-regulated genes of 6
clusters
» S/G2 phase : 9 (train:5/ test:2)
» S phase : 8 (Histones) (train:5 / test:3)

> M/G1 boundary (SWI5 or ECB (MCM1) or STE12/MCM1
dependent) : 19 (train:13 / test:6)

> G2/M phase: 15 (train: 10 / test:5)
» Late G1, SCB regulated : 14 (train: 9 / test:5)
» Late G1, MCB regulated : 39 (train: 25 / test:12)

85



cluster size | mean Fesponse | MNean response
to Clndp to Clb2p

1 2758 -(.125 -(.130

2 28 -0.095 -0.094

3 27 -0.085 -0.070

4 37 1.142 -0.510

B 42 -(.406 1.316
11{) -(.180 -0.152
132 0.795 -0.552
8 26 -0.629 -0.180
9 25 -(.447 0.066
10 47 -(.194 0.102
11 32 {0.025 -0.104
12 225 -0.086 -0.120
13 43 -(1.284 0.050
14 25 0.079 -0.010
15 53 -(0.437 -0.138
16 B3 -0.058 -0.088
17 23 -(.178 -0.050
18 45 -(.122 -0.204
19 86 -0.230 -0.138
2Q 76 -0.002 -0.084
21 28 -(1.140 -0.104
22 3h -0.046 -0.058
23 34 -0.167 -0.168
24 117 -0.213 -0.120
25 H2 -(1.214 -(.198
unclassified | 2014 -(.189 -0.088
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[Clusters identified by various methods]
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[The comparison of entropies for
each method]




Summary and Discussion

e Challenges of Artificial Intelligence and Machine Learning
Applied to Biosciences
» Huge data size
» Noise and data sparseness
» Unlabeled and imbalanced data
» Dynamic Nature of DNA Microarray Data

e Further study for DNA Microarray Data by GTM
» Modeling of dynamic nature
» Active data selections
» Proper measure of clustering ability
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